2 2 A pr 2 00 8 GENERALIZED HARISH - CHANDRA DESCENT AND APPLICATIONS TO GELFAND PAIRS

نویسنده

  • DMITRY GOUREVITCH
چکیده

In the first part of the paper we generalize a descent technique due to HarishChandra to the case of a reductive group acting on a smooth affine variety both defined over arbitrary local field F of characteristic zero. Our main tool in that is Luna slice theorem. In the second part of the paper we apply this technique to symmetric pairs. In particular we prove that the pair (GLn(C), GLn(R)) is a Gelfand pair. We also prove that any conjugation invariant distribution on GLn(F ) is invariant with respect to transposition. For non-archimedean F the later is a classical theorem of Gelfand and Kazhdan. We use the techniques developed here in our proceeding work [AG3] where we prove an archimedean analog of the theorem on uniqueness of linear periods by H. Jacquet and S. Rallis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

4 M ar 2 00 8 GENERALIZED HARISH - CHANDRA DESCENT AND APPLICATIONS TO GELFAND PAIRS

In the first part of the paper we generalize a descent technique due to Harish-Chandra to the case of a reductive group acting on a smooth affine variety both defined over arbitrary local field F of characteristic zero. Our main tool in that is Luna slice theorem. In the second part of the paper we apply this technique to symmetric pairs. In particular we prove that the pair (GLn(C), GLn(R)) is...

متن کامل

ar X iv : 0 80 3 . 33 95 v 6 [ m at h . R T ] 1 3 Ju l 2 00 8 GENERALIZED HARISH - CHANDRA DESCENT AND APPLICATIONS TO GELFAND PAIRS

In the first part of the paper we generalize a descent technique due to HarishChandra to the case of a reductive group acting on a smooth affine variety both defined over arbitrary local field F of characteristic zero. Our main tool is Luna slice theorem. In the second part of the paper we apply this technique to symmetric pairs. In particular we prove that the pair (GLn(C), GLn(R)) is a Gelfan...

متن کامل

ar X iv : 0 80 3 . 33 95 v 5 [ m at h . R T ] 3 J un 2 00 8 GENERALIZED HARISH - CHANDRA DESCENT AND APPLICATIONS TO GELFAND PAIRS

In the first part of the paper we generalize a descent technique due to HarishChandra to the case of a reductive group acting on a smooth affine variety both defined over arbitrary local field F of characteristic zero. Our main tool is Luna slice theorem. In the second part of the paper we apply this technique to symmetric pairs. In particular we prove that the pair (GLn(C), GLn(R)) is a Gelfan...

متن کامل

Spiral Optimization Algorithm Using Periodic Descent Directions

A few years ago, the authors proposed a nature-inspired metaheuristic concept, the spiral optimization algorithm, which was inspired by spiral phenomena in nature. The principal idea of the algorithm is to utilize spiral trajectories generated by multiple generalized spiral models for search applications. The generalized spiral model is composed of a spiral matrix defined by a composite rotatio...

متن کامل

ar X iv : 0 80 5 . 28 58 v 1 [ gr - q c ] 1 9 M ay 2 00 8 DISCRETE DIFFERENTIAL FORMS FOR COSMOLOGICAL SPACE - TIMES

In this article we describe applications of the numerical method of discrete differential forms in computational GR. In particular we consider the initial value problem for vacuum space-times that admit plane gravitational waves. As described in an earlier paper the discrete differential form approach can provide accurate results in spherically symmetric space-times [28]. Moreover it is manifes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009